Boundedness and asymptotic stability of nonlinear Volterra integro-differential equations using Lyapunov functional
نویسندگان
چکیده
منابع مشابه
Asymptotic stability of neutral stochastic functional integro-differential equations*
This paper is concerned with the existence and asymptotic stability in the p-th moment of mild solutions of nonlinear impulsive stochastic delay neutral partial functional integro-differential equations. We suppose that the linear part possesses a resolvent operator in the sense given in [8], and the nonlinear terms are assumed to be Lipschitz continuous. A fixed point approach is used to achie...
متن کاملAnalytical-Approximate Solution for Nonlinear Volterra Integro-Differential Equations
In this work, we conduct a comparative study among the combine Laplace transform and modied Adomian decomposition method (LMADM) and two traditional methods for an analytic and approximate treatment of special type of nonlinear Volterra integro-differential equations of the second kind. The nonlinear part of integro-differential is approximated by Adomian polynomials, and the equation is reduce...
متن کاملApproximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method
This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...
متن کاملBoundedness of Impulsive Functional Differential Equations via Lyapunov Functional
Differential equations with impulsive effect provide mathematical models for many phenomena and processes in the field of natural sciences and technology. Recently a well developed stability theory of functional differential systems has come into existence [15-21]. Qualitative properties of impulsive differential equations have been intensively researched for years. In [3-11], by using lyapunov...
متن کاملStochastic Volterra integro-differential equations: stability and numerical methods
We consider the reliability of some numerical methods in preserving the stability properties of the linear stochastic functional differential equation ẋ(t) = αx(t) + β ∫ t 0 x(s)ds+ σx(t− τ )Ẇ (t), where α, β, σ, τ ≥ 0 are real constants, and W (t) is a standard Wiener process. We adopt the shorthand notation of ẋ(t) to represent the differential dx(t) etc. Our choice of test equation is a stoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of King Saud University - Science
سال: 2019
ISSN: 1018-3647
DOI: 10.1016/j.jksus.2018.11.012